1. <th id="d83bz"></th>
      2. 您所在位置:主頁 > 高考資訊 > 知識點 >

        三角函數公式大全表格

        時間:2021-09-17發布于:教育培訓網發布人:百學培訓瀏覽:0

        三角函數公式大全表格

          三角函數的概念是描述周期運動現象的重要數學模型,在日常中有著非常廣泛的應用。

          那么當然在高中數學上,三角函數也是一個特別重要的內容板塊,難度和重要性都名列前茅。

          所以三角函數作為重中之重,我們當然要努力攻克!

          想要在這個板塊有所提升的第一步就是要掌握牢記三角函數的概念以及公式,各個公式之間的轉換,這樣才能給做題打下良好的基礎。

          今天學長給大家帶來高中數學三角函數公式大全!大家不用費勁整理,各種公式都在這,掌握了這些公式,隨隨便便秒殺三角函數的所有題型,讓你搖身一變成學霸!

          三角函數公式匯總

        三角函數公式匯總
        三角函數公式匯總

          常用的三角函數公式和口訣大全整理

          公式一:

          設α為任意角,終邊相同的角的同一三角函數的值相等:

          sin(2kπ+α)=sinα (k∈Z)

          cos(2kπ+α)=cosα (k∈Z)

          tan(2kπ+α)=tanα (k∈Z)

          cot(2kπ+α)=cotα (k∈Z)

          公式二:

          設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

          sin(π+α)=-sinα

          cos(π+α)=-cosα

          tan(π+α)=tanα

          cot(π+α)=cotα

          公式三:

          任意角α與 -α的三角函數值之間的關系:

          sin(-α)=-sinα

          cos(-α)=cosα

          tan(-α)=-tanα

          cot(-α)=-cotα

          公式四:

          利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

          sin(π-α)=sinα

          cos(π-α)=-cosα

          tan(π-α)=-tanα

          cot(π-α)=-cotα

          公式五:

          利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:

          sin(2π-α)=-sinα

          cos(2π-α)=cosα

          tan(2π-α)=-tanα

          cot(2π-α)=-cotα

          公式六:

          π/2±α及3π/2±α與α的三角函數值之間的關系:

          sin(π/2+α)=cosα

          cos(π/2+α)=-sinα

          tan(π/2+α)=-cotα

          cot(π/2+α)=-tanα

          sin(π/2-α)=cosα

          cos(π/2-α)=sinα

          tan(π/2-α)=cotα

          cot(π/2-α)=tanα

          sin(3π/2+α)=-cosα

          cos(3π/2+α)=sinα

          tan(3π/2+α)=-cotα

          cot(3π/2+α)=-tanα

          sin(3π/2-α)=-cosα

          cos(3π/2-α)=-sinα

          tan(3π/2-α)=cotα

          cot(3π/2-α)=tanα

          (以上k∈Z)

          注意:在做題時,將a看成銳角來做會比較好做。

          誘導公式記憶口訣

          規律總結

          上面這些誘導公式可以概括為:

          對于π/2*k ±α(k∈Z)的三角函數值,

         、佼攌是偶數時,得到α的同名函數值,即函數名不改變;

         、诋攌是奇數時,得到α相應的余函數值,即sin→cos;cos→sin;tan→cot,cot→tan.

          (奇變偶不變)

          然后在前面加上把α看成銳角時原函數值的符號。

          (符號看象限)

          例如:

          sin(2π-α)=sin(4·π/2-α),k=4為偶數,所以取sinα。

          當α是銳角時,2π-α∈(270°,360°),sin(2π-α)<0,符號為“-”。

          所以sin(2π-α)=-sinα

          上述的記憶口訣是:

          奇變偶不變,符號看象限。

          公式右邊的符號為把α視為銳角時,角k·360°+α(k∈Z),-α、180°±α,360°-α

          所在象限的原三角函數值的符號可記憶

          水平誘導名不變;符號看象限。

          各種三角函數在四個象限的符號如何判斷,也可以記住口訣“一全正;二正弦(余割);三兩切;四余弦(正割)”.

          這十二字口訣的意思就是說:

          第一象限內任何一個角的四種三角函數值都是“+”;

          第二象限內只有正弦是“+”,其余全部是“-”;

          第三象限內切函數是“+”,弦函數是“-”;

          第四象限內只有余弦是“+”,其余全部是“-”.

          上述記憶口訣,一全正,二正弦,三內切,四余弦

          還有一種按照函數類型分象限定正負:

          函數類型 第一象限 第二象限 第三象限 第四象限

          正弦 ...........+............+............—............—........

          余弦 ...........+............—............—............+........

          正切 ...........+............—............+............—........

          余切 ...........+............—............+............—........

          同角三角函數基本關系

          同角三角函數的基本關系式

          倒數關系:

          tanα·cotα=1

          sinα·cscα=1

          cosα·secα=1

          商的關系:

          sinα/cosα=tanα=secα/cscα

          cosα/sinα=cotα=cscα/secα

          平方關系:

          Sin2(α)+cos2(α)=1

          1+tan2(α)=sec2(α)

          1+cot2(α)=csc2(α)

          同角三角函數關系六角形記憶法

          六角形記憶法:

          構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

          (1)倒數關系:對角線上兩個函數互為倒數;

          (2)商數關系:六邊形任意一頂點上的函數值等于與它相鄰的兩個頂點上函數值的乘積。

          (主要是兩條虛線兩端的三角函數值的乘積)。由此,可得商數關系式。

          (3)平方關系:在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等于下面頂點上的三角函數值的平方。

          兩角和差公式

          兩角和與差的三角函數公式

          sin(α+β)=sinαcosβ+cosαsinβ

          sin(α-β)=sinαcosβ-cosαsinβ

          cos(α+β)=cosαcosβ-sinαsinβ

          cos(α-β)=cosαcosβ+sinαsinβ

          tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

          tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

          二倍角公式

          二倍角的正弦、余弦和正切公式(升冪縮角公式)

          sin2α=2sinαcosα

          cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

          tan2α=2tanα/[1-tan2(α)]

          半角公式

          半角的正弦、余弦和正切公式(降冪擴角公式)

          Sin2(α/2)=(1-cosα)/2

          Cos2(α/2)=(1+cosα)/2

          tan2(α/2)=(1-cosα)/(1+cosα)

          另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

          萬能公式

          sinα=2tan(α/2)/[1+tan2(α/2)]

          cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

          tanα=2tan(α/2)/[1-tan2(α/2)]

          三倍角公式

          三倍角的正弦、余弦和正切公式

          sin3α=3sinα-4sin^3(α)

          cos3α=4cos^3(α)-3cosα

          tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

          三倍角公式聯想記憶

          ★記憶方法:諧音、聯想

          正弦三倍角:3元 減 4元3角(欠債了(被減成負數),所以要“掙錢”(音似“正弦”))

          余弦三倍角:4元3角 減 3元(減完之后還有“余”)

          ☆☆注意函數名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

          ★另外的記憶方法:

          正弦三倍角: 山無司令 (諧音為 三無四立) 三指的是"3倍"sinα, 無指的是減號, 四指的是"4倍", 立指的是sinα立方

          余弦三倍角: 司令無山 與上同理

          和差化積公式

          三角函數的和差化積公式

          sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

          sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

          cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

          cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

          積化和差公式

          三角函數的積化和差公式

          sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

          cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

          cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

          sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]

          正加正,正在前,余加余,余并肩正減正,余在前,余減余,負正弦

          聲明:

          本站(www.rxbbx.com)部分圖文轉自網絡,刊登本文僅為傳播信息之用,絕不代表贊同其觀點或擔保其真實性。若有來源標注錯誤或侵犯了您的合法權益,請作者持權屬證明與本網聯系,我們將及時更正、刪除,謝謝

        熱點推薦

        推薦圖文

        熱點標簽

        强奸到高潮视频

          1. <th id="d83bz"></th>